AI提升南山射电望远镜大气修正精度

查找参加最新学术会议,发表EI、SCI论文,上学术会议云
2025年第四届算法、数据挖掘与信息技术国际会议(ADMIT 2025)
2025年第八届机器学习和自然语言处理国际会议(MLNLP 2025)
2025年第八届数据科学和信息技术国际会议(DSIT 2025)
2025年数据科学与智能系统国际会议(DSIS 2025)
2025年第四届先进的电子、电气和绿色能源国际会议 (AEEGE 2025)
2025年第二届亚太计算技术、通信和网络会议(CTCNet 2025)
艾思科蓝 | 学术会议 | 学术期刊 | 论文辅导 | 论文编译 | 发表支持 | 论文查重
文章导读
当宇宙信号穿越地球大气,一个看不见的“减速带”——对流层延迟,正悄然扭曲着射电望远镜的观测精度。中科院团队用人工智能破解了这道难题:他们构建的混合深度学习模型,将预测误差压缩至惊人的8毫米,准确率高达96%。这项技术不仅能提升VLBI观测的相位修正精度,更将助力未来110米巨型望远镜捕捉更清晰的宇宙信号。想知道AI如何让射电望远镜“看”得更准?这篇研究揭示了突破性解决方案。
— 内容由好学术AI分析文章内容生成,仅供参考。

受空气密度和水汽含量变化的影响,宇宙中的电磁波在穿越地球大气时传播速度会减慢,从而产生对流层延迟。这种延迟被认为是甚长基线干涉测量(VLBI)和全球导航卫星系统(GNSS)定位中的主要误差来源。如何精确建模与预报这种延迟,成为了当前天文观测与大地测量领域亟需攻克的重要课题之一。

中国科学院新疆天文台李明帅团队,利用南山26米射电望远镜台址的多年GNSS和气象观测数据,构建了一种融合门控循环单元(GRU)与长短期记忆网络(LSTM)的混合深度学习模型。该方法属于人工智能技术的重要分支,可自动从大量观测数据中学习大气延迟变化规律,从而实现对天顶对流层延迟(ZTD)的高精度短期预测。

团队首先对南山台站多年的GNSS观测进行了频谱分析,发现ZTD变化具有明显的年周期与半年度周期——夏季偏高、冬季偏低。这种变化与气温和水汽含量密切相关:温度越高、水汽越多,信号延迟越显著。

针对传统经验模型难以捕捉复杂非线性变化的局限,研究团队引入深度学习架构,将GRU用于提取短期变化特征,LSTM用于记忆长期趋势,两者结合后形成“混合神经网络”,既能捕捉大气延迟的短时波动,又能识别其长期规律。结果显示,该模型的预测误差仅约为8毫米,相关系数达96%,显著优于传统统计模型和单一神经网络。

高精度的对流层延迟预测结果,可有效提升VLBI观测的大气相位修正精度,改善射电源定位与基线解算结果,同时也为毫米波天文观测提供更准确的气象支撑,在可降水量(PWV)反演与天气预报中具有广泛的应用前景。该研究展示了人工智能在射电望远镜大气校正中的应用潜力,为未来奇台110米望远镜(QTT)及多站干涉观测的高频段运行奠定了技术基础。

相关研究成果发表在《天文与天体物理研究》(Research in Astronomy and Astrophysics)上。

论文链接

AI提升南山射电望远镜大气修正精度

ZTD变化与气象要素的关系

AI提升南山射电望远镜大气修正精度

不同模型的预测精度比较

© 版权声明
2025年第四届算法、数据挖掘与信息技术国际会议(ADMIT 2025)
2025年第八届机器学习和自然语言处理国际会议(MLNLP 2025)
2025年第八届数据科学和信息技术国际会议(DSIT 2025)
2025年数据科学与智能系统国际会议(DSIS 2025)
第二届大数据分析与人工智能应用学术会议(BDAIA2025)
2025年第四届先进的电子、电气和绿色能源国际会议 (AEEGE 2025)
2025年第二届亚太计算技术、通信和网络会议(CTCNet 2025)
艾思科蓝 | 学术会议 | 学术期刊 | 论文辅导 | 论文编译 | 发表支持 | 论文查重

相关文章

查找最新学术会议,发表EI、SCI论文,上学术会议云
艾思科蓝 | 学术会议 | 学术期刊 | 论文辅导 | 论文编译 | 发表支持 | 论文查重

暂无评论

none
暂无评论...