科研人员提出高效时空多模态图神经网络

查找参加最新学术会议,发表EI、SCI论文,上学术会议云
2025年数据科学与智能系统国际会议(DSIS 2025)
2025年第四届先进的电子、电气和绿色能源国际会议 (AEEGE 2025)
2025年第二届亚太计算技术、通信和网络会议(CTCNet 2025)
热门国际学术会议推荐 | 出版检索稳定,快至7天录用
2026年第五届算法、计算和机器学习国际会议(CACML 2026)
2026年第八届软件工程和计算机科学国际会议(CSECS 2026)
文章导读
你是否想过,AI也能“读懂”大脑的复杂语言?中国科学院团队最新研发的ET_MGNN模型,融合动态功能与结构连接,首次实现自闭症和阿尔茨海默病的高效精准识别。该模型准确率大幅提升,参数量却减少90%,更可定位关键病变脑区,为临床诊断提供直观依据。揭秘背后如何用AI捕捉大脑“时空密码”,推动脑疾病机制研究迈入新阶段。
— 内容由好学术AI分析文章内容生成,仅供参考。

近日,中国科学院合肥物质科学研究院团队提出了高效时空多模态图神经网络(ET_MGNN)新型深度学习框架,提升了阿尔茨海默病和自闭症谱系障碍等脑疾病的自动诊断准确率。

理解大脑的复杂活动需同时关注功能协调和结构解剖。然而,现有的脑网络学习模型在处理动态建模和多模态信息融合方面存在局限。为克服这些挑战,研究团队受大语言模型架构的启发,开发了ET_MGNN模型。

ET_MGNN模型通过时间滑动窗口技术,将反映脑区同步性的动态功能连接与提供物理约束的结构连接进行自适应融合,构建出更全面的动态大脑图序列;引入RWKV模块,结合循环神经网络捕获长程依赖的能力和Transformer并行计算的高效性,能够更精准地模拟大脑在不同功能状态间的动态切换;引入GASO图读取模块,能够识别出与疾病高度相关的关键脑区,为临床诊断提供直观的生物标志物。

研究团队进一步在ABIDE II(自闭症)和ADNI(阿尔茨海默病)等数据集上进行了验证。实验结果显示:在自闭症分类任务中,相比于性能优秀的模型,ET_MGNN模型的分类准确率平均提升了11.8%;在阿尔茨海默病与轻度认知障碍的鉴别中,ET_MGNN模型的准确率提升了32.9%。与同类模型相比,ET_MGNN模型的参数量减少了一个数量级,具有更低的峰值显存占用,更适合在资源受限的实际医疗环境中部署。ET_MGNN模型还能够识别相关疾病的病理关联区域。例如,在自闭症识别中,ET_MGNN模型聚焦躯体运动网络;在阿尔茨海默病诊断中,ET_MGNN模型能够精准定位涉及记忆和注意力控制的默认网络及显著网络中的异常脑区。

上述研究验证了ET_MGNN模型的有效性,为理解脑疾病的神经机制提供了新视角。

相关研究成果发表在Neurocomputing上。研究工作得到国家自然科学基金等的支持。

论文链接

科研人员提出高效时空多模态图神经网络

面向脑疾病智能诊断的高效时空多模态图神经网络架构

© 版权声明
2025年数据科学与智能系统国际会议(DSIS 2025)
第二届大数据分析与人工智能应用学术会议(BDAIA2025)
2025年第四届先进的电子、电气和绿色能源国际会议 (AEEGE 2025)
2025年第二届亚太计算技术、通信和网络会议(CTCNet 2025)
热门国际学术会议推荐 | 多学科征稿、征稿主题广 | 免费主题匹配
2026年第五届算法、计算和机器学习国际会议(CACML 2026)
2026年第八届软件工程和计算机科学国际会议(CSECS 2026)

相关文章

查找最新学术会议,发表EI、SCI论文,上学术会议云
第三届机器学习与自动化国际学术会议(CONF-MLA 2025)
热门国际学术会议推荐 | 立即查看超全会议列表

1 条评论

  • 尘埃哨兵
    尘埃哨兵 游客

    这个模型在临床部署上有戏吗,医院真的能直接用吗?

    广东省深圳市
    回复